
Readme file for paper AIAA 2006-6753

Revisiting Spacetrack Report #3

David A. Vallado1
Center for Space Standards and Innovation, Colorado Springs, Colorado, 80920

Paul Crawford2
Crawford Communications Ltd., Dundee, DD2 1EW, UK

Richard Hujsak3
Analytical Graphics, Inc., Exton, PA, 19341

and

T. S. Kelso4
Center for Space Standards and Innovation, Colorado Springs, Colorado, 80920

Based on the original NORAD 1980 Spacetrack Report #3

1 Senior Research Astrodynamicist, Center for Space Standards and Innovation, 7150 Campus Dr, Suite 260,
dvallado@centerforspace.com, AIAA Associate Fellow.
2 Principal Engineer, 25 Blackness Avenue, pcrawford@dundee0.demon.co.uk.
3 Orbit Determination Lead Engineer, 220 Valley Creek Blvd, rhujsak@agi.com.
4 Senior Research Astrodynamicist, Center for Space Standards and Innovation, 7150 Campus Dr, Suite 260,
tskelso@centerforspace.com, AIAA Associate Fellow.

Notes and Change Summary for AIAA-2006-6753

Revision Notes:

2008-11-03

• Minor updates to improve error handling. The return codes for each routine were switched from Integer to
Boolean. This permits a simple check of runtime success, while the details of the error are contained in the error
integer value.

2008-09-03

• New version (and version identifier included in the code) to coincide with the differential correction program.
Minor updates for eccentricity checks and tolerances. Changes for the DSPACE routine and the integrator to
enhance computational speed for certain satellites. Some of the zip files were missing some files and Matlab files
had upper and lower case filenames. An option was added to permit two modes of operation – one that emulates
what we believe AFSPC does, and another that uses improved processing techniques that AFSPC may not be
using.

November 2007

• Updates to make the application more compatible with the AFPSC implementation based on user inputs.
Specifically, the GHA (sidereal time) was set back to the older way of processing. This introduces sub-mm
differences. Also, there were a few operations where the original code had used user written functions (mod,
atan2). These functions returned certain quadrants and in some places in the code, the results were used without a
trigonometric argument. Thus, the quadrant became important for those cases to matching the same answers. We
did not resurrect the older approaches, instead because there were only a couple of instances of this, simple
conditional statements were inserted to simulate the intended behavior.

April 2007

• Updates for manual operation. The program uses a verification mode (with additional parameters at the end of the
second line in the .tle file containing the start/stop/delta minutes from epoch (mfe) information) to permit quick
checks of relevant times and spacing of ephemeris generation. The catalog mode lets the user test an entire
satellite catalog for a two day span centered on the epoch time of each element set. The manual operation gives
three additional options – entering the start/stop/delta mfe information, entering the YMDHMS information for
the start and stop times, or entering the year and dayofyr for the start and stop times. This should give enough
flexibility to permit various uses for the tool.

• Constants were re-worked to use the machine precision available. For instance, pi, twopi, rad2deg, deg2rad, etc.
can be calculated from pi, which is defined in some languages. Where it is not, 4.0*atan(1.0) is used. In addition,
mathematical and astrodynamic constants were separated.

• Misc formatting to correct typos, misspellings, etc.
• Removed the “ildm” variable in DPPER as it was not being used. It was originally used during development of the

2006 paper as a Lyddane choice switch, but had later been made obsolete.

August 2006

• Original version baseline for the paper

Language Notes:

Each language has files (debug1.m, debug1.cpp, debug1.for, debug1.pas) to facilitate debugging the values as a program
executes. They are disabled in the codes as shipped, but may be enabled if needed.

C++
The C++ executable needs a Borland C++ specific DLL to run (cc3260mt.dll). If you do not have Borland C++, simply
recompile the code with your specific compiler.
Lee Barker has prepared a more object oriented version of the C++ code.
Contents:
 testcpp.cpp Main program for example use
 sgp4unit.cpp (.h) sgp4 mathematical theory

 sgp4io.cpp (.h) I/O routine for TLE data (twoline2rv conversion)
 sgp4ext.cpp (.h) Additional routines needed for the test program (jday, rv2coe, etc)
 debug*.cpp Debug routines to print out intermediate variables at the end of each function call

FORTRAN
Contents:
 testfor.for Main program for example use
 sgp4unit.for sgp4 mathematical theory
 sgp4io.for I/O routine for TLE data (twoline2rv conversion)
 sgp4ext.for Additional routines needed for the test program (jday, rv2coe, etc)
 astmath.cmn Math constants (not a common in the usual sense)
 sgp4.cmn sgp4 common variables (near earth and deep space)
 lksgp4.bat makefile for Lahey FORTRAN compiler/linker
 debug*.for Debug routines to print out intermediate variables at the end of each function call

Java
Joe Coughlin and Kurt Motekew have converted the code to Java. It has not been fully tested against these versions yet.

Matlab
The Matlab version is due to Jeff Beck who performed the original translation. He provides the following notes. The code
is a line-by-line translation of Vallado's C++ version of 28 Jun 05. The files are grouped below according to the “unit” “io”
“ext” files in the other languages.
Matt Schmunk has provided a vectorized form of Matlab that should run significantly faster. It has not been fully tested
against the other approaches yet.
Contents:
 testmat.m Driver script for testing and example usage
 sgp4.m Main sgp4 routine
 sgp4init.m Initialization routine for sgp4
 initl.m Initialization for sgp4
 dsinit.m Deep space initialization
 dspace.m Deep space perturbations
 dpper.m Deep Space periodics
 dscom.m Deep Space common variables
 twoline2rv.m TLE conversion routine
 angl.m Find the angle between two vectors
 constmath.m set mathematical constants
 days2mdh.m convert days to month day hour minute second
 getgravc.m Get the gravity constants
 gstime.m Find Greenwich sidereal time
 invjday.m Inverse Julian Date
 jday.m Find the Julian Date
 mag.m Magnitude of a vector
 newtonnnu.m Kepler’s iteration given eccentricity and true anomaly
 rv2coe.m Convert position and velocity vectors to classical orbital elements
 debug*.m Debug routines to print out intermediate variables at the end of each function call

To verify your installation, execute the testmat script in Matlab. At the input type prompt, enter "v". At the input elset
prompt, enter "sgp4-ver.tle". The elset numbers will scroll down the screen and some error messages will appear. When
execution is complete, do a file comparison of your output file "tmatver.out" with "tmatver.af80" (or "tmatver.gsfc" if you
elected to comment out the AF80 inclination selection in dpper).

To generate debug output, execute the following lines in Matlab before executing sgp4test:
 global idebug
 idebug = 1;

If you have any corrections, comments, or suggestions, please feel free to contact me at beckja@alumni.lehigh.edu. Also,
if you develop any supplemental routines (e.g. a GUI driver or an orbit display) and would like to share them, I'll be happy
to include them with future versions.

Jeff Beck, beckja@alumni.lehigh.edu, 19 Oct 2005

Pascal
The Pascal code was developed using Borland’s Turbo Pascal. As such, it should be compatible with most Pascal
compilers, but there may be some I/O routines that will be different. The underlying mathematical operations should be
consistent.

The NewDelay unit is needed for some older DOS applications that try to use Turbo Pascal on faster computers.
Essentially, NewDelay slows the processing down to permit operation on modern computers.

The Borland extended type is advertised as a 10-byte solution whereas the other codes are all 8-byte operations.

Contents:
 testpas.pas Main program for example use
 sgp4unit.pas sgp4 mathematical theory
 sgp4io.pas I/O routine for TLE data (twoline2rv conversion)
 sgp4ext.pas Additional routines needed for the test program (jday, rv2coe, etc)
 debug*.pas Debug routines to print out intermediate variables at the end of each function call

